
Experiments with a Gaussian Merging-Splitting Algorithm for HMM
Training for Speech Recognition�

Ananth Sankar

Speech Technology and Research Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

ABSTRACT
It is well known that the expectation-maximization (EM) algorithm,
commonly used to estimate hidden Markov model (HMM) parame-
ters for speech recognition, is sensitive to the initial model parameter
values, making appropriate parameter initialization important. We
investigate the use of iterative Gaussian splitting and EM training to
initialize the desired number of Gaussians per HMM state (or state
cluster). We then study merging of Gaussians which contain little
training data as an approach to robust parameter estimation. Finally
Gaussian merging and splitting is combined to form the Gaussian
Merging-Splitting (GMS) algorithm. Detailed experimental studies
show that Gaussian splitting gives similar performance to our pre-
vious training algorithm, even though the two algorithms give very
different parameter values. The robust parameter estimation from
Gaussian merging results in better performance than our old algo-
rithm for speaker-independent models that have a large number of
parameters relative to the amount of training data. In addition, in one
experiment, speaker adaptation gave a 7% relative improvement in
word error rate over the SI models when the SI models were trained
with Gaussian splitting alone, as compared to a 15.5% improvement
when the SI models were trained with both splitting and merging,
even though the unadapted SI models gave similar performance. Fi-
nally, experiments with the GMS algorithm show that, for a given
number of Gaussian parameters, better performance is achieved by
reducing the number of HMM state clusters and increasing the num-
ber of Gaussians per state cluster.

1. Introduction
Most conventional automatic speech recognition (ASR) sys-
tems are based on context-dependent (CD) phone-based hid-
den Markov models (HMMs) that use Gaussian mixture mod-
els (GMMs) for the state-conditioned observation densities.
A commonly used CD unit is the triphone, which is a model
of a phone in the context of left and right phones. The num-
ber of observed triphones in the training data is usually very
large, with many triphones having very little training data,
resulting in poor estimates of the model parameters. One so-
lution to this problem is to use HMM state clustering where
the states in a cluster share a set of parameters, such as a set
of Gaussians [1].

The HMM parameters are usually computed by maximum-
likelihood (ML) estimation using

�This work was sponsored by DARPA through the Naval Command and
Control Ocean Surveillance Centerunder contract N66001-94-C-6048.

the expectation-maximization (EM) algorithm [2]. The EM
algorithm is an iterative procedure that recomputes the model
parameters given their current estimates so as to increase the
likelihood of the training data ateach iteration. This algo-
rithm is sensitive to the values of the initial parameters, and
guarantees only a locally optimal solution. Different systems
use different approaches to initialize and train the model pa-
rameters. However, to the author’s knowledge, there has been
no clear comparative description in the literature of the effect
of different initialization and training procedures on speech
recognition performance. Such a description is of value for
anyone training an HMM based speech recognition system.
We believe the studies reported in this paper provide useful
insight into the issue of HMM parameter initialization and
training.

In this paper, we present the Gaussian Merging-Splitting
(GMS) algorithm for HMM training. In this method, iter-
ative Gaussian splitting and EM training is used to initialize
the required number of Gaussians in each HMM state cluster.
Starting with a single Gaussian, Gaussian splitting is used to
increase the number of Gaussians at each stage of training
until the required number of Gaussians is reached. In addi-
tion, at each stage, Gaussians are iteratively merged until each
Gaussian has a minimum amount of training data. The GMS
algorithm results in a variable number of Gaussians in each
HMM state cluster. The number of Gaussians is automati-
cally decided subject to a constraint on the maximum number
in each state cluster. Detailed experimental results show the
effect of Gaussian splitting and merging, and compare the
performance with our previous training algorithm.

2. SRI’s Previous Training Approach
SRI’s DECIPHERTM speech recognition system is based on
HMM state clustering where the states in each cluster share
the same set of Gaussians or Genone [1]. Each state in a
cluster has a different mixture weight distribution to these
shared Gaussians. The HMM states are clustered separately
for eachphone. This is done by first training a phonetically
tied mixture (PTM) system, where all states in a phone share
the same set of 100 Gaussians. The states in this phone are
then clustered using bottom-up agglomerative clustering. For
clustering, the distance between two states is given by the



weighted-by-counts increase in entropy of the mixture weight
distribution (to the shared 100 Gaussians) due to merging the
two states [1]. The mixture weight distribution of the merged
state is easily computed as the weighted-by-counts average of
the individual distributions.

The Gaussians in each state cluster are initialized using the
corresponding 100 PTM Gaussians. The 100 Gaussians in
eachphone are used to initialize the required number foreach
state cluster through a series of steps involving the selection
of the most likely Gaussians for each state cluster, and also
Gaussian merging. Details of the algorithm can be found
in [1].

This approach poses a potential problem for the initial val-
ues of the Gaussians in the state clusters and hence the final
models. The 100 PTM Gaussians cover the entire acoustic
space for a particular phone. Each state cluster for this phone
covers only a small part of this large acoustic space. Thus,
the PTM Gaussians may not be appropriate for initializing the
Gaussians in the individual state clusters, and may result in
inefficient use of the parameters. To address this issue, we
studied an initialization algorithm based on Gaussian splitting.

3. Gaussian Splitting

We implemented a new initialization scheme based on the
splitting strategy commonly used in vector quantization [3].
In this approach, we first estimate a single Gaussian model
for each Genone. Given the segmentation of data into HMM
states, the ML estimate of these (single) Gaussians is globally
optimal. We then split the Gaussian for each Genone into
two by slightly perturbing the mean of the Gaussian along the
direction of the standard deviation vector, and reestimate the
model by further EM training. This process of splitting and
retraining is repeated until the required number of Gaussians is
achieved. At each stage, we can choose how many Gaussians
to split. Thus, if there are currentlynGaussians that we want
to increase tomGaussians, then we split them�nGaussians
having the largest average variance. This average, computed
by using the geometric mean, is a measure of the likelihood
of the training data modeled by that single Gaussian. The
Gaussian with the largest variance is the one for which the
training data likelihood is minimum. Since our goal is to
maximize the training data likelihood, splitting this Gaussian
is intuitively appealing. Gaussian splitting is also used in
the Cambridge University HTK system [4]. However, in that
system, the Gaussian with the largest amount of data is split
as opposed to the one with the largest variance. We do not
believe that this difference will significantly affect the final
recognition results.

Let the mean and variance of Gaussiani in a Genone be
denoted as�i and�2

i , respectively. Let the parameters for
the Gaussians resulting from splitting Gaussiani be denoted

as�i;1;�
2
i;1;�i;2, and�2

i;2. Then
�i;1 = �i + � � s (1)

�i;2 = �i � � � s (2)

�
2
i;1 = �

2
i;2 = �

2
i (3)

wheres is a vector whosekth component is the standard
deviation of thekth dimension of the original Gaussian,i,
and� is a small positive number. We set� to 0:001 in our
experiments.

Each stateq in a state cluster has a separate mixture weight dis-
tribution to the Gaussians in that Genone, resulting in a Gaus-
sian mixture model for the state given by

P
w
q
iN (:;�i;�

2
i).

When we split Gaussiani, the mixture weightwq
i of stateq

for Gaussiani is divided equally into the mixture weights for
the resulting Gaussians.

The Gaussian splitting initialization approach can be config-
ured in a variety of ways. For example, we may split all
Gaussians at each stage, or may split only the single largest
variance Gaussian, or may do something in between these
extremes.

4. Gaussian Merging
If there is too little training data segmented into an HMM state
cluster, then the Gaussians in the corresponding Genone will
not be well estimated. To ensure robust Gaussian estimation,
we used a Gaussian merging algorithm. In this method, the
Gaussians in a Genone are iteratively merged using bottom-
up agglomerative clustering until all Gaussians have at least a
threshold amount of data. The optimum value of this thresh-
old is experimentally determined. Gaussian merging results
in an automatically selected variable number of Gaussians per
Genone. The clustering distance we used between two Gaus-
sians,N1 andN2, is given by the weighted-by-counts increase
in entropy due to merging the Gaussians:

D(1; 2) =
(T1 + T2)

2
log jC1;2j �

T1

2
log jC1j �

T2

2
log jC2j;

(4)
whereT1 andT2 are speech data counts, andjC1j, jC2j and
jC1;2j are the determinants of the covariance matrices for the
individual Gaussians, and the merged Gaussian, respectively.
C1;2 can easily be computed from the sufficient statistics of
the individual Gaussians.

5. The GMS Algorithm
In the GMS algorithm, Gaussian merging is done beforeeach
Gaussian splittingoperation. This guarantees that at all stages
of the algorithm, the Gaussians are robustly estimated for all
Genones. In the GMS algorithm, the user must specify the
number of Genones and the maximum number of Gaussians
per Genone. The GMS algorithm iteratively increases the
number of Gaussians using merging and splitting until the



maximum number of Gaussians is reached. Since the amount
of training data per Genone varies, and Gaussians are merged
until all Gaussians have a threshold of data, the number of
Gaussians per Genone usually varies with the Genones after a
certain number of merging and splitting operations. Genones
with lesser training data have fewer Gaussians and vice versa.
The number of Gaussians that are split thus varies with the
Genones as the algorithm progresses.

6. Experimental Results

6.1. Data Description

We conducted detailed experiments using the Wall Street Jour-
nal (WSJ) corpus to study the effect of Gaussian splitting and
merging, comparing performance with our previous training
algorithm. For training, we used the WSJ SI-284 corpus,
which consists of 142 male and 142 female speakers, with
about 18,000 utterances per gender. For our experiments, we
used half of the male speakers and 49 utterances per speaker
for a training set of 3479 utterances. Since we ran numerous
training experiments in this study, we used this smaller train-
ing set to reduce the time for each experiment. However, we
believe the results will extend to larger training sets.

For recognition experiments, we used three test sets. The
first consists of 10 male speakers taken from the 1993 WSJ
development and evaluation test sets, each uttering about 23
sentences for a total of 230 sentences and 3645 words. This
set is referred to subsequently as WSJ93. A 20,000-word
bigram language model was used for this set. The second
test set was the 10-speaker male subset of the 1994 WSJ S0
development test set and used a 5000-word bigram language
model. This set consisted of 209 sentences with 3330 words,
and is referred to as WSJ94S0. The third test set was the male
subset of the 1995 North American Business News H3-C0
(Sennheiser microphone) development set and used a 60,000-
word bigram language model. This set had 152 sentences with
3904 words, and is referred to as NABN95. All recognition
experiments were run using word lattices [5] that we had
previously generated for these test sets.

The speech features we used were 12 mel-frequency cepstral
coefficients (MFCCs) together with their first- and second-
order time derivatives, and the normalized energy along with
its first- and second-order derivatives to give a 39-dimensional
speech feature vector.

6.2. Effect of Gaussian Splitting

To estimate how well the Gaussians in a Genone model the
training data, we can measure the number of feature vectors
in each Gaussian. If some Gaussians model most of the
data, and the others only a few data points, it might be an
indicationof inefficient parameter usage caused by poor initial
conditions. Letni denote the number of feature vectors in the

ith Gaussian of some Genone, andN =
P

ni be the total
number of feature vectors for that Genone. The entropy of
the distributionpi = ni=N gives an estimate of how the data
is distributed into the Gaussians. The entropy is computed as

H = �

MX

i=1

pi logpi; (5)

whereM is the number of Gaussians in the Genone. The
maximum value of this entropy is logM , and it is achieved
when the data is equally distributed into the Gaussians.

We trained a Genone-based HMM using the old initializa-
tion approach (Section 2) and the Gaussian splitting approach
(Section 3). These models had 991 HMM state clusters, with
each cluster sharing a Genone with 32 Gaussians. Thus, the
maximum entropy for each Genone is 5 (log2 32). As ex-
plained previously, the Gaussian splitting approach can be
configured in a variety of ways. For example, we may split all
Gaussians at each stage, or may split only the single largest
variance Gaussian, or may do something in between these
extremes. We experimented with many of these approaches.
There was not a very significant difference in performance
between these methods, and so we decided on a simple strat-
egy that splits all Gaussians ateach stage until we have the
desired number of Gaussians per Genone.

Figure1 plots theentropy for each Genone in theHMM trained
with our old initialization algorithm (see Section 2), and the
solid line in Figure 2 plots the entropies for the Gaussian
splitting approach. Thex-axis is the Genone index, and the
Genones are ordered from left to right on the axisaccording
to an increasing amount of data per Genone. As we can see
from the figures, the entropy for many Genones is much less
than the maximum of 5 in the old approach, showing that for
these Genones, the Gaussians are underutilized. However, the
entropy for all Genones trained using the splitting approach is
very close to 5. Clearly, the two initializationapproaches have
dramatically different influences on the model parameters.

From the figures, it appears that the Gaussian splitting ap-
proach does a better job of utilizing the model parameters.
We ran recognition experiments using the old model and the
one trained with Gaussian splitting. Table 1 shows the word
error rates on the three test sets. As can be seen, Gaussian
splitting gave essentially the same performance as the old ap-
proach. One possible problem with Gaussian splitting is that
if there are not enough data points in a Genone, theneach
Gaussian may wind up getting only a small amount of data,
since the data is equally distributed into the Gaussians. The
Gaussian merging algorithm described in Section 4 should
take care of this by merging Gaussians with too little data.



0 100 200 300 400 500 600 700 800 900 1000
1.5

2

2.5

3

3.5

4

4.5

5

Genone index

E
nt

ro
py

Figure 1: Entropy for Genones with the old training algorithm

0 100 200 300 400 500 600 700 800 900 1000
1.5

2

2.5

3

3.5

4

4.5

5

Gaussian Splitting            
Gaussian Splitting and Merging

Figure 2: Entropy for Genones with the Gaussian splitting
algorithm

Database Word Error Rate (%)
Old Algorithm Gaussian Splitting

WSJ93 23.7 24.0
WSJ94S0 13.7 13.9
NABN95 24.3 23.5

Table 1: Word error rates for different initialization algorithms

Word Error Rate (%)
Old Gaussian splitting followed

by merging
Database Algorithm Merging Threshold Values

0 25 50 100

WSJ93 23.7 24.0 23.9 23.5 23.9
WSJ94S0 13.7 13.9 13.5 13.5 13.8
NABN95 24.3 23.5 23.9 23.9 23.9

Table 2: Comparison of word error rates with different merg-
ing thresholds

6.3. Effect of Gaussian Merging

We merged the 32 Gaussians in each of the 991 Genones
trained using the Gaussian splitting algorithm. This merging
was followed by one iteration of EM training to reestimate
the models, starting with the merged Gaussians. The dotted
line in Figure 2 plots the entropy for the resulting Genones,
showing that Genones with less data use fewer Gaussians
while Genones with enough data use close to the maximum
of 32 Gaussians. Table 2 shows the word error rates of the
new training approach with different merging thresholds. It
also replicates the word error rates obtained by using the old
training approach.

From these results, we see that the merging algorithm resulted
in a small improvement for WSJ93 and WSJ94S0. At a
merging threshold of 50, theperformanceof thenew algorithm
is essentially the same as that of the old algorithm. Again,
we see that no significant improvement in performance was
achieved.

We investigated how speaker-independent (SI) models trained
using the splitting and merging algorithms performed when
they were adapted to the test speakers using maximum-
likelihood transformation based adaptation where we used
block-diagonal matrix affine transformations of the HMM
mean vectors [6]. These experiments were carried out only
on the WSJ93 set. Adaptation was done in supervised mode
with the 40 common sentences provided by each speaker. Ta-
ble 3 gives the word error rates for both the unadapted and
adapted models. We can see clearly that Gaussian merging is
critical to good adaptation performance. It is interesting that
while the difference in the performance of the unadapted mod-
els is small, training the SI models by Gaussian splitting and
merging resulted in a 15% adaptation improvement over the SI
models as compared to only 7% when Gaussian splittingalone
was used to train the SI models. This result can be explained
by the greater robustness of the SI model parameter estimates
from Gaussian merging as compared to splitting alone. Since
the SI models are used to estimate the transformations used
in adaptation, poor SI model estimates cause incorrect adap-
tation transformation estimates, which in turn result in poorly



Training method for SI models
Number of Genones = 991

Models Old Gaussian Splitting
Splitting and Merging

Speaker- 23.7 24.0 23.5
independent
Adapted 20.5 22.3 19.9

Table 3: Comparison of word error rates for WSJ93 before
and after adaptation using different approaches to train the SI
models

estimated adapted models. However, while Gaussian merging
gave better performance than splitting alone, it is only slightly
better than the old algorithm.

Table 3 clearly shows the effect of greater robustness due to
Gaussian merging. We further investigated this by comparing
the Gaussian splitting and merging algorithm to the old ap-
proach described in Section 2. Since the greater robustness of
Gaussian merging would be more evident in much larger sys-
tems, we trained an HMM system with 2027 Genones and 32
Gaussians per Genone, using both the old training approach
and the new approach (Gaussian splitting untileach Genone
has 32 Gaussians, followed by iterative Gaussian merging
with a merging threshold of 50 frames). Table 4 shows the
word error rates for this system, along with the corresponding
word error rates for the smaller, 991-Genone system.

From this table, we see that for both the Gaussian splitting
and merging and old training algorithms, the word error rate
was higher with the larger system (2027 Genones). However,
the system trained with the splitting and merging algorithm
degraded more gracefully than the one trained with the old
algorithm. The relative increase in word error rate for the old
system on WSJ93, WSJ94S0, and NABN95 was 6.8%,13.1%,
and 7.0%, respectively, as compared to 1.7%, 4.3%, and 5%,
respectively, for the new algorithm. Thus, the Gaussian split-
ting and merging training algorithm gives more robust esti-
mates of the model parameters than the old algorithm. This

Word Error Rate (%)
Old algorithm Gaussian Splitting and

Merging Algorithm
Database 991 2027 991 2027

Genones Genones Genones Genones

WSJ93 23.7 25.3 23.5 23.9
WSJ94S0 13.7 15.5 13.5 14.1
NABN95 24.3 26.0 23.9 25.1

Table 4: Comparison of word error rates for systems with
different numbers of parameters

Training method for SI models
Number of Genones = 2027

Models Old Splitting
and Merging

Speaker- 25.3 23.9
independent

Adapted 21.1 20.3

Table 5: Comparison of word error rates for WSJ93 before
and after adaptation using different approaches to train the SI
models

greater robustness is reflected in the fact that the word error
rates are not as sensitive to the number of model parameters,
creating a wider range of the number of model parameters that
give similar error rates. This makes it easier to experimentally
search the space of models to find the optimal one.

Finally, in Table 5, we present adaptation results on WSJ93
for the 2027 Genone system when the SI models were trained
with the old algorithm and the splitting and merging algo-
rithm. The results show that the performance both before and
after adaptation was superior with the splitting and merging
algorithm.

7. Training with the GMS Algorithm
After studying the individual effects of Gaussian splitting and
merging, we used the GMS algorithmto train Genonic HMMs
by using the WSJ SI-284 subset described above. We experi-
mented with different numbers of Genones and Gaussians per
Genone. Table 6 gives the resulting recognition word error
rates. Since the GMS algorithm guarantees robust parameter
estimation, we experimented with large numbers of Gaussians
per Genone. In previous development work, we had typically
used 32 Gaussians per Genone. However, in using the GMS
algorithm we decided to increase this upto 512 Gaussians
per Genone. (To allow comparison across different settings
with the same total number of Gaussian parameters, the total
number of Gaussians is given in the table in parentheses.)

One interesting observation we can make from Table 6 is that
the optimal system has 126 Genones and 512 Gaussians per
Genone. This is significantly different from our previous sys-
tems, which typically used 1000 or more Genones and 32
Gaussians per Genone. We note, however, that we used only
a fraction of the WSJ SI-284 data to train the systems listed
in Table 6, and so the optimal number of parameters may be
different from that of our previous systems. However, the
table still shows a preference for systems with fewer Genones
and more Gaussians per Genone. For example, comparing the
991-Genone/32-Gaussian system with the 126-Genone/256-
Gaussian system, we see that the latter has a lower word
error rate even though the number of parameters is compara-



Number of Number of Gaussians per Genone
Genones / 32 128 256 512
Test Set

126 / (16128) (32256) (64512)
WSJ93 - 23.7 23.0 23.0

WSJ94S0 - 12.9 12.3 11.7
NABN95 - 22.5 21.8 22.0

252 / (32256) (64512)
WSJ93 - 22.8 22.5 -

WSJ94S0 - 13.2 12.5 -
NABN95 - 22.6 22.7 -

510 / (16320)
WSJ93 23.4 - - -

WSJ94S0 13.3 - - -
NABN95 23.8 - - -

991 / (31712)
WSJ93 23.8 - - -

WSJ94S0 13.2 - - -
NABN95 23.8 - - -

Table 6: Word error rates (%) with different number of
Genones and Gaussians per Genone. The number of Gaus-
sians is in parenthesis.

ble. In fact, the 126-Genone/128-Gaussian system also has
a lower error rate than the 991-Genone/32-Gaussian system
even though it has fewer parameters. One explanation for
this might be that when two HMM state clusters overlap in
acoustic space, modeling them as a single cluster with more
Gaussians gives better resolution than modeling them as two
clusters with half the number of Gaussians in each cluster.

Since the optimal models trained with the GMS algorithm
have fewer Genones than our previous systems, there is the
potential of a speedup for speech recognition in addition to
the improved word error rate. At any frame during the Viterbi
search, multiple hypotheses must be evaluated. Foreach
hypothesis, the frame likelihoods of the Gaussians in the cor-
responding Genone are computed andcached. When the
same Genone is used by another active hypothesis at the same
frame, the cache is used to provide the likelihoods. For sys-
tems with fewer Genones, the same Genone is used for more
of the active hypotheses at any frame, thus reducing the num-
ber of Genone likelihood computations. However, since the
number of Gaussians per Genone is larger,each Genone like-
lihood computation is more expensive. We can reduce the
cost of Genone likelihood computations by using Gaussian
shortlists [1]. In this method, vector quantization is used to
divide the acoustic space into Voronoi regions. A shortlist
of Gaussians is maintained for each Genone ineach region.
During recognition, the Voronoi region corresponding to the
test frame is used to determine the shortlist of Gaussians to

be computed. By effectively using shortlists, we believe that
a significant speedup can be achieved using the new models
trained by the GMS algorithm. We are currently studying this
issue.

8. Summary and Conclusion
We have introduced the GMS algorithm for HMM training
and presented a detailed comparative study of the algorithm.
Gaussian splitting has the property of uniformly distributing
the data into the available Gaussians, while Gaussian merging
results in robust parameter estimation. This robustness was
shown by graceful degradation in performance when the num-
ber of parameters is larger than can be properly estimated by
the available training data, and also by significantly improved
performance of speaker adaptation algorithms. The GMS al-
gorithm allows us to efficiently train HMMs by automatically
determining the number of Gaussians for a given number of
Genones. Since robust estimation is guaranteed, we can train
systems with a very large number of Gaussians per Genone.
Some interesting observations were made about the effect of
varying the number of state clusters or Genones and the num-
ber of Gaussians per Genone. As a result, we found that the
optimum HMM structure was very different from that used by
our previous systems; the number of state clusters or Genones
was significantly decreased while the number of Gaussians
per Genone was significantly increased. The reduced number
of Genones has the potential of giving a significant speedup
during recognition.

References
1. V. Digalakis, P. Monaco, and H. Murveit, “Genones: General-

ized Mixture Tying in Continuous Hidden Markov Model-Based
Speech Recognizers,”IEEE Transactions on Speech and Audio
Processing, vol. 4, no. 4, pp. 281–289, 1996.

2. A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,”Journal of the
Royal Statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

3. Y. Linde, A. Buzo, and R. Gray, “An Algorithm for Vector
Quantizer Design,”IEEE Transactions on Communications,
vol. COM-28, pp. 84–95, January 1980.

4. S. Young and P. Woodland, “The Use of State Tying in Contin-
uous Speech Recognition,” in Proceedings of EUROSPEECH,
pp. 2203–2206, 1993.

5. H. Murveit, J. Butzberger, V. Digalakis, and M. Weintraub,
“Large-Vocabulary Dictation Using SRI’s DECIPHER(TM)
Speech Recognition System: Progressive-Search Techniques,”
in Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. II 319–322, 1993.

6. L. Neumeyer, A. Sankar, and V. Digalakis, “A Comparative
Study of Speaker Adaptation Techniques,” inProceedings of
EUROSPEECH, pp. 1127–1130, 1995.


